Ambient air pollution, greenness and the risk of pediatric inflammatory bowel disease

BY MICHAEL ELTEN

MSc. Epidemiology Candidate - University of Ottawa

Presentation overview

BACKGROUND MET

METHODS

RESULTS

DISCUSSION

NEXT STEPS

What is Inflammatory Bowel Disease?

- A chronic immune-mediated disease affecting the digestive tract
- Two subtypes:
 - Crohn's disease (CD)
 - Ulcerative colitis (UC)
- No current cure, treatments target inflammation
- Childhood-onset IBD tends to be more severe

Incidence group Low with increase

Cosnes et al. 2011. Gastroentrology. 140(6):1785-94

Increasing Incidence of IBD

- Incidence of IBD is highest in westernized nations, increasing throughout the 20th century
- Incidence rates in newly industrialized nations are rapidly increasing
- If current trends persist, IBD will soon be a global disease

How is it developed?

- Etiology is poorly understood
- •There are both genetic and environmental components
- The gut microbiome seems to be implicated

Why this study population?

Ontario has a high incident rate of IBD

Ontario is the largest IBD-linked cohort

Children have had less environmental exposure

Why air pollution and greenness?

Air pollution exposures increase during industrialization

Urbanization has led to loss of available greenspace

Potential mechanisms

- Disruption of the gut microbiome
 - Differences in gut microbe diversity in pediatric UC cases vs healthy controls
 - Oxidative stress from air pollution has been seen to affect the gut function
 - Greenspace alters the outdoor microbial environment
- Dysregulation of fetal development
 - Many immune system elements that are thought to be involved in IBD begin developing in 2nd and 3rd trimesters
 - In-utero exposure to pollution can activate the fetal immune response

Review of Previous Literature

Previous epidemiological study:

Kaplan et al. 2010. Am J Gastro. 105(11):2412

- •Looked at postnatal NO₂, PM₁₀ and SO₂ exposures in a UK general population
- •Found that increased levels of NO2 were associated with increased risk of Crohn's disease in those <23 years

Meta-analysis of passive smoking and IBD

Jones et al 2008. Am J Gastro. 103(9):2382

- •Weak positive association with Crohn's disease
- No association with ulcerative colitis

- Rural vs urban study
 - Found that rurality was protective against IBD
 - Strongest association in children

Benchimol et al 2017. Am J Gastro. 112(9):1412

Data Sources

Cohort data:

- MOMBABY has information on all mother/infant pairs
- RPDB has additional demographic information
- CENSUS-CA has some census variables used for modelling
- OCCC database that has cases of IBD up to Mar. 31, 2017

Exposure data:

Health Canada Santé Canada NO₂, PM_{2 5}, O₃ data — modelled pollutant data

■ Greenness (NDVI) – a measure of greenness a short distance from a given residence

Exposure Assessment – Air pollution

- 1. Initial pollutant estimates for each 6-digit postal code were derived as follows:
 - NO₂ national land use regression (LUR) model
 - PM_{2.5} satellite-based geographically weighted regression techniques
 - O₃ an optimal interpolation technique
- 2. Obtain weekly estimates of the pollutants through temporal interpolation
- 3. Assign exposures to the cohort for each week of gestation, and each year of childhood

Exposure Assessment - Greenness

- 1. Estimates of greenness from the Landsat satellite were obtained using NDVI measures (values ranged from 0-1)
- 2. The growing season maximum estimate within a 250m buffer of each 6-digit postal code was assigned
- 3. Annual estimates were averaged to get simple measures of pregnancy and childhood exposures to greenness

Data Linkage

Baseline characteristics

Characteristic	IBD (n=3464)	Non-IBD (n=2,722,530)
Sex		
Male	1991 (57%)	1,395,884 (51%)
Female	1473 (43%)	1,326,646 (49%)
Mean birthweight (g)		
	3,442.43	3,410.53
Mean maternal age (years)		
	30.0	29.5
Area of residence		
Rural	333 (10%)	347,710 (13%)
Urban	3131 (90%)	2,374,820 (87%)
Median neighborhood income quintile		
5 (Highest)	798 (23.0%)	540,140 (19.8%)
4	699 (20.2%)	540,092 (19.8%)
3	692 (20.0%)	540,304 (19.9%)
2	698 (20.2%)	540,239 (19.8%)
1 (Lowest)	564 (16.3%)	540,363 (19.9%)
Missing	13 (0.4%)	21,392 (0.8%)
Mother or sibling with IBD		
Yes	206 (6%)	14,410 (0.5%)
No	3258 (94%)	2,708,120 (99.5%)

Cohort IBD breakdown

Disease subtype	Number of cases	Percent of total
Crohn's disease	1915	55%
Ulcerative colitis	1253	36%
Unclassifiable	296	9%
Total IBD	3464	100%

Research Question 1

Is there an association between maternal or childhood exposures to ambient air pollution, and the risk of developing childhood-onset IBD?

Exposure correlation matrix

Mean childhood exposures:

NO₂: 12.2 ppb

PM_{2.5}: 7.9 ug/m³

 O_3 : 24.5 ppb

Statistical Analysis

- Distributed lag non-linear models (DLNM)
 - Adapted from time-series analyses
 - Take into account lagged effects of an exposure on an outcome
- Cox proportional hazards models
 - Follow-up time: from birth until event (or age 18)
 - Exposure: continuous time-dependent variable
 - Annual exposure to pollutants was considered as a time-dependent variable
 - Hazard ratios (HR) show the risk of a child developing IBD per IQR increase

Model Building

Entered into the model based on previous literature:

- ✓ Family history of IBD
- ✓ Rural/Urban status
- ✓ Median neighborhood household income quintile

Considered as potential confounders through change in estimate (CIE) method:

- **X**Sex
- ×Greenness during pregnancy
- ×Greenness during childhood
- ×Maternal age
- ×Season of conception
- **×**Parity

In-utero exposure

Nitrogen Dioxide (NO₂)

Weeks	HR*	95% CI
1-12	1.00	0.97 - 1.03
13-26	1.00	0.98 - 1.03
27-40	1.02	0.99 - 1.05

*adjusted for:

- > Childhood exposure to pollutant
- > Rural / urban residence
- ➤ Mother or sibling with IBD
- > Median neighborhood household income quintile

In-utero exposure

Fine Particulate Matter (PM_{2.5})

Weeks	HR*	95% CI
1-12	0.98	0.85 – 1.11
13-26	0.94	0.83 – 1.05
27-40	1.00	0.87 - 1.14

*adjusted for:

- > Childhood exposure to pollutant
- > Rural / urban residence
- ➤ Mother or sibling with IBD
- > Median neighborhood household income quintile

In-utero exposure

Ozone (O₃)

Weeks	HR*	95% CI
1-12	1.07	0.94 - 1.22
13-26	1.14	1.05 – 1.25
27-40	1.03	0.90 - 1.18

*adjusted for:

- > Childhood exposure to pollutant
- > Rural / urban residence
- ➤ Mother or sibling with IBD
- > Median neighborhood household income quintile

Childhood Exposure

*adjusted for:

- > Average pregnancy exposure
- > Rural / urban residence
- ➤ Mother or sibling with IBD
- > Median neighborhood household income quintile

Overall IBD

Childhood Exposure

*adjusted for:

- > Average pregnancy exposure
- > Rural / urban residence
- ➤ Mother or sibling with IBD
- ➤ Median neighborhood household income quintile

Disease Subtypes

Interpretation

- For in-utero exposures, seems to be a positive association with O_3 during the second trimester
- Increased exposure to all pollutants during childhood period was consistently associated with IBD before age 18
- No differences seen by disease subtype

Research Question 2

Is there an association between childhood exposure to residential greenness, and the risk of developing childhood-onset IBD?

Greenness Correlation Matrix

Statistical Analysis

- Cox proportional hazards models
 - Follow-up time: from birth until event (or age 18)
 - Exposure: time-varying quartile of residential greenness
 - Hazard ratios (HR) show the risk of a child developing IBD for a given quartile compared to lowest level of greenness

Overall IBD

Disease Subtypes

Interpretation

- Childhood exposure to greenness may be protective of ulcerative colitis
- No evidence for association with Crohn's disease
- Suggestion of a dose-response relationship

Overall Conclusions

- •Interesting results, but can't make any causal statements from one study
- •The findings here strengthen the proposed relevance of the environment in IBD etiology
- Childhood exposures to both air pollution, and greenness should be investigated further

Next steps

1

Examine early childhood exposure period

2

Test other measures of greenness

Replicate study in other populations

Acknowledgements

Thesis advisory committee:

- Dr. Eric Lavigne
- Dr. Eric Benchimol
- Dr. Deshayne Fell

Unofficial advisory committee:

- Dr. Ellen Kuenzig
- Dr. Gilaad Kaplan
- Dr. Hong Chen
- Dr. Antonio Gasparini

Health Canada

Santé Canada Questions / Feedback?

melte087@uottawa.ca @MichaelElten

