DATA SCIENCE TRAINING

 

New to data science or looking to pick up a few new skills? Don’t miss these free webinars, guided practical tutorials and online resources featuring CANUE data.

Developed in partnership with Population Data BC


AN INTRODUCTION TO DATA SCIENCE – WEBINAR AND TUTORIAL SERIES

REGISTER

MODULE 1: Introduction to Machine Learning
January 15 | 11am to noon pacific: Overview webinar
January 17 | 11am to 1pm pacific: Guided practical tutorial

MODULE 2: Regression and Regularization Algorithms
January 29 | 11am to noon pacific: Overview webinar
January 31 | 11am to 1pm pacific: Guided practical tutorial

MODULE 3: Advanced Supervised Learning
February 12 | 11am to noon pacific: Overview webinar
February 14 | 11am to 1pm pacific: Guided practical tutorial

MODULE 4: Advanced Unsupervised Learning
February 26 | 11am to noon pacific: Overview webinar
February 28 | 11am to 1pm pacific: Guided practical tutorial

Dr. Aman Verma  is a Data Engineer with a PhD in Epidemiology from McGill University, and an undergraduate degree in Computer Science. He has experience in developing machine learning systems with large databases, particularly for scientific data in healthcare. While he’s comfortable learning any programming language, he’s recently become particularly interested in R. Aman is currently involved in a number of projects, including measuring how following opioid prescription guidelines can decrease the risk of opioid overdose, modelling trajectories of chronic obstructive pulmonary disease, and assessing how to best prioritize ambulance calls using secondary healthcare data.

 


AN INTRODUCTION TO DATA MANAGEMENT AND CLEANING FOR ANLAYSIS IN ‘R’  

REGISTER

This self paced free online course will provide you with an introduction to Data Management and Cleaning for Analysis using R Software. Each of the four modules includes a Power Point slide deck, CANUE training data, R code and associated exercises for practice.

Topics covered include:

  • Introduction and theory of data cleaning and management
  • Getting started with R software
  • Subsetting variables and data cleaning
  • Creating variables, subset observations and data cleaning
  • Merging, joining and reshaping data

Megan Striha currently works as a Data Analyst. She has a Masters of Public Health degree and three years of experience in health data analysis, including working with survey, administrative and census data.