July 22 | 2019

Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects.

Lavigne E, Lima I, Hatzopoulou M, Van Ryswyk K, Decou ML, Luo W, van Donkelaar A, Martin RV, Chen H, Stieb DM, Crighton E, Gasparrini A, Elten M, Yasseen AS 3rd, Burnett RT, Walker M, Weichenthal S.

Environ Int. 2019 Jul 1;130:104953. DOI: 10.1016/j.envint.2019.104953 [Epub ahead of print]

Abstract

BACKGROUND:

Cardiovascular malformations account for nearly one-third of all congenital anomalies, making these the most common type of birth defects. Little is known regarding the influence of ambient ultrafine particles (<0.1 μm) (UFPs) on their occurrence.

OBJECTIVE:

This population-based study examined the association between prenatal exposure to UFPs and congenital heart defects (CHDs).

METHODS:

A total of 158,743 singleton live births occurring in the City of Toronto, Canada between April 1st 2006 and March 31st 2012 were identified from a birth registry. Associations between exposure to ambient UFPs between the 2nd and 8th week post conception when the foetal heart begins to form and CHDs identified at birth were estimated using random-effects logistic regression models, adjusting for personal- and neighbourhood-level covariates. We also investigated multi-pollutant models accounting for co-exposures to PM2.5, NO2 and O3.

RESULTS:

A total of 1468 CHDs were identified. In fully adjusted models, UFP exposures during weeks 2 to 8 of pregnancy were not associated with overall CHDs (Odds Ratio (OR) per interquartile (IQR) increase = 1.02, 95% CI: 0.96-1.08). When investigating subtypes of CHDs, UFP exposures were associated with ventricular septal defects (Odds Ratio (OR) per interquartile (IQR) increase = 1.13, 95% CI: 1.03-1.33), but not with atrial septal defect (Odds Ratio (OR) per interquartile (IQR) increase = 0.89, 95% CI: 0.74-1.06).

CONCLUSION:

This is the first study to evaluate the association between prenatal exposure to UFPs and the risk of CHDs. UFP exposures during a critical period of embryogenesis were associated with an increased risk of ventricular septal defect.

July 15 | 2019

Interdisciplinary-driven hypotheses on spatial associations of mixtures of industrial air pollutants with adverse birth outcomes. 

Jesus Serrano-Lomelin, Charlene C. Nielsen, M. Shazan M. Jabbar, Osnat Wine, Colin Bellinger, Paul J. Villeneuvee, Dave Stieb, Nancy Aelicks, Khalid Aziz, Irena Buka, Sue Chandra, Susan Crawford, Paul Demers, Anders C. Erickson, Perry Hystad, Manoj Kumar, Erica Phipps, Prakesh S. Shah, YanYuan, Osmar R. Zaiane, Alvaro R. Osornio-Vargas.

Environment International Volume 131, October 2019, https://doi.org/10.1016/j.envint.2019.104972

 

Abstract

Background

Adverse birth outcomes (ABO) such as prematurity and small for gestational age confer a high risk of mortality and morbidity. ABO have been linked to air pollution; however, relationships with mixtures of industrial emissions are poorly understood. The exploration of relationships between ABO and mixtures is complex when hundreds of chemicals are analyzed simultaneously, requiring the use of novel approaches.

Objective

We aimed to generate robust hypotheses spatially linking mixtures and the occurrence of ABO using a spatial data mining algorithm and subsequent geographical and statistical analysis. The spatial data mining approach aimed to reduce data dimensionality and efficiently identify spatial associations between multiple chemicals and ABO.

Methods

We discovered co-location patterns of mixtures and ABO in Alberta, Canada (2006–2012). An ad-hoc spatial data mining algorithm allowed the extraction of primary co-location patterns of 136 chemicals released into the air by 6279 industrial facilities (National Pollutant Release Inventory), wind-patterns from 182 stations, and 333,247 singleton live births at the maternal postal code at delivery (Alberta Perinatal Health Program), from which we identified cases of preterm birth, small for gestational age, and low birth weight at term. We selected secondary patterns using a lift ratio metric from ABO and non-ABO impacted by the same mixture. The relevance of the secondary patterns was estimated using logistic models (adjusted by socioeconomic status and ABO-related maternal factors) and a geographic-based assignment of maternal exposure to the mixtures as calculated by kernel density.

Results

From 136 chemicals and three ABO, spatial data mining identified 1700 primary patterns from which five secondary patterns of three-chemical mixtures, including particulate matter, methyl-ethyl-ketone, xylene, carbon monoxide, 2-butoxyethanol, and n-butyl alcohol, were subsequently analyzed. The significance of the associations (odds ratio > 1) between the five mixtures and ABO provided statistical support for a new set of hypotheses.

Conclusion

This study demonstrated that, in complex research settings, spatial data mining followed by pattern selection and geographic and statistical analyses can catalyze future research on associations between air pollutant mixtures and adverse birth outcomes.

July 10 | 2019

Air pollution, lung function and COPD: results from the population-based UK Biobank study.

Dany Doiron, Kees de Hoogh, Nicole Probst-Hensch, Isabel Fortier, Yutong Cai, Sara De Matteis, Anna L. Hansell.

European Respiratory Journal 2019;  https://doi.org/10.1183/13993003.02140-2018

Abstract

Ambient air pollution increases the risk of respiratory mortality but evidence for impacts on lung function and chronic obstructive pulmonary disease (COPD) is less well established. The aim was to evaluate whether ambient air pollution is associated with lung function and COPD, and explore potential vulnerability factors.

We used UK Biobank data on 3 03 887 individuals aged 40–69 years, with complete covariate data and valid lung function measures. Cross-sectional analyses examined associations of Land Use Regression-based estimates of particulate matter (PM2.5, PM10 and PMcoarse) and nitrogen dioxide (NO2) concentrations with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio, and COPD (FEV1/FVC <lower limit of normal). Effect modification was investigated for sex, age, obesity, smoking status, household income, asthma status, and occupations previously linked to COPD.

Higher exposures to each pollutant were significantly associated with lower lung function. A 5 µg·m−3 increase in PM2.5 concentration was associated with lower FEV1 (−83.13 mL [95%CI: −92.50, −73.75]) and FVC (−62.62 mL [95%CI: −73.91, −51.32]). COPD prevalence was associated with higher concentrations of PM2.5 (OR 1.52 [95%CI: 1.42, 1.62], per 5 µg·m−3), PM10 (OR 1.08 [95%CI: 1.00, 1.16], per 5 µg·m−3), and NO2 (OR 1.12 [95%CI: 1.10, 1.14], per 10 µg·m−3), but not with PMcoarse. Stronger lung function associations were seen for males, individuals from lower income households, and “at-risk” occupations, and higher COPD associations for obese, lower income, and non-asthmatic participants.

Ambient air pollution was associated with lower lung function and increased COPD prevalence in this large study.

July 2 | 2019

Interaction between neighborhood walkability and traffic-related air pollution on hypertension and diabetes: The CANHEART cohort.

Howell NA, Tu JV, Moineddin R, Chen H, Chu A, Hystad P, Booth GL.

Environ Int. 2019 Jun 19:104799. DOI: 10.1016/j.envint.2019.04.070

 

Abstract

BACKGROUND:

Living in unwalkable neighborhoods has been associated with heightened risk for diabetes and hypertension. However, highly walkable environments may have higher concentrations of traffic-related air pollution, which may contribute to increased cardiovascular disease risk. We therefore aimed to assess how walkability and traffic-related air pollution jointly affect risk for hypertension and diabetes.

METHODS:

We used a cross-sectional, population-based sample of individuals aged 40-74 years residing in selected large urban centres in Ontario, Canada on January 1, 2008, assembled from administrative databases. Walkability and traffic-related air pollution (NO2) were assessed using validated tools and linked to individuals based on neighborhood of residence. Logistic regression was used to estimate adjusted associations between exposures and diagnoses of hypertension or diabetes accounting for potential confounders.

RESULTS:

Overall, 2,496,458 individuals were included in our analyses. Low walkability was associated with higher odds of hypertension (lowest vs. highest quintile OR = 1.34, 95% CI: 1.32, 1.37) and diabetes (lowest vs. highest quintile OR = 1.25, 95% CI: 1.22, 1.29), while NO2exhibited similar trends (hypertension: OR = 1.09 per 10 p.p.b., 95% CI: 1.08, 1.10; diabetes: OR = 1.16, 95% CI: 1.14, 1.17). Significant interactions were identified between walkability and NO2 on risk for hypertension (p < 0.0001 and diabetes (p < 0.0001). At higher levels of pollution (40 p.p.b.), differences in the probability of hypertension (lowest vs. highest walkability quintile: 0.26 vs. 0.25) or diabetes (lowest vs. highest walkability quintile: 0.15 vs. 0.15) between highly walkable and unwalkable neighborhoods were diminished, compared to differences observed at lower levels of pollution (5 p.p.b.) (hypertension, lowest vs. highest walkability quintile: 0.21 vs. 0.13; diabetes, lowest vs. highest walkability quintile: 0.09 vs. 0.06).

CONCLUSIONS:

Walkability and traffic-related air pollution interact to jointly predict risk for hypertension and diabetes. Although walkable neighborhoods appear to have beneficial effects, they may accentuate the harmful effects of air pollution on cardiovascular risk factors.

June 24 | 2019

Using maps to communicate environmental exposures and health risks: Review and best-practice recommendations. 

Stieb DM, Huang A, Hocking R, Crouse DL, Osornio-Vargas AR, Villeneuve PJ. 

Environ Res. 2019 May 31;176:108518. DOI:10.1016/j.envres.2019.05.049. [Epub ahead of print]

Abstract

BACKGROUND:

Graphical materials can be effective communication tools, and maps in particular are a potentially powerful means of conveying spatial information. Previous reviews have provided insights on the application of cartographic best practices, pitfalls to avoid, and considerations related to risk perception and communication, but none has reviewed primary studies of the effectiveness or utility of maps to users, nor have they addressed the issue from the perspective of health literacy, environmental health literacy, or public health ethics.

OBJECTIVES:

To systematically identify and review the literature pertaining to evaluation of maps in general, or specific map features, as environmental exposure and health risk communication tools; to formulate best-practice recommendations; and to identify future research priorities.

METHODS:

A health science librarian searched the literature for commentaries, reviews, and primary studies. Titles, abstracts, and full-text papers were screened for inclusion, and details of methods and results were extracted from 4 reviews and commentaries and 18 primary studies. This was supplemented by one additional review and 13 additional primary studies pertaining to use of maps for communication about wildfires and floods. One additional paper was identified by reviewing reference lists of all relevant papers.

RESULTS: and Discussion:

While there are significant gaps in the evidence, we formulated best practice recommendations highlighting the perspectives of health literacy and environmental health literacy. Key recommendations include: understanding the map developer’s societal role and mental model underlying map design; defining, understanding and iteratively engaging with map users; informing map design using key theoretical constructs; accounting for factors affecting risk perception; adhering to risk communication principles and cartographic best practices; and considering environmental justice and public health ethics implications. Recommendations for future research are also provided.

CIHR Data Analysis Grants | June 26th | 2019

 

The Canadian Institutes for Health Research has announced a new Operating Grant Competition for data analysis using existing databases and cohorts. The intent of this funding opportunity is to highlight and encourage the use of previously funded cohort, administrative, and survey data. There will be three funding streams; one stream in cancer prevention and control, another in reproductive, maternal, child, and youth health, as well as a stream in healthy cities intervention research.

 

CANUE hosted a webinar on June 26th (9 am pacific | 12 noon eastern) for researchers who would like more detailed information on our data holdings, partnerships with health data holders, and an opportunity to ask questions directly to the CANUE team.

DOWNLOAD SLIDES

DOWNLOAD AUDIO

 


June 18 | 2019

Accelerometer and GPS Data to Analyze Built Environments and Physical Activity. 

Tamura K, Wilson JS, Goldfeld K, Puett RC, Klenosky DB, Harper WA, Troped PJ.

Res Q Exerc Sport. 2019 Jun 14:1-8. DOI: 10.1080/02701367.2019.1609649. [Epub ahead of print]

Abstract

Purpose: Most built environment studies have quantified characteristics of the areas around participants’ homes. However, the environmental exposures for physical activity (PA) are spatially dynamic rather than static. Thus, merged accelerometer and global positioning system (GPS) data were utilized to estimate associations between the built environment and PA among adults. Methods: Participants (N = 142) were recruited on trails in Massachusetts and wore an accelerometer and GPS unit for 1-4 days. Two binary outcomes were created: moderate-to-vigorous PA (MVPA vs. light PA-to-sedentary); and light-to-vigorous PA (LVPA vs. sedentary). Five built environment variables were created within 50-meter buffers around GPS points: population density, street density, land use mix (LUM), greenness, and walkability index. Generalized linear mixed models were fit to examine associations between environmental variables and both outcomes, adjusting for demographic covariates. Results: Overall, in the fully adjusted models, greenness was positively associated with MVPA and LVPA (odds ratios [ORs] = 1.15, 95% confidence interval [CI] = 1.03, 1.30 and 1.25, 95% CI = 1.12, 1.41, respectively). In contrast, street density and LUM were negatively associated with MVPA (ORs = 0.69, 95% CI = 0.67, 0.71 and 0.87, 95% CI = 0.78, 0.97, respectively) and LVPA (ORs = 0.79, 95% CI = 0.77, 0.81 and 0.81, 95% CI = 0.74, 0.90, respectively). Negative associations of population density and walkability with both outcomes reached statistical significance, yet the effect sizes were small. Conclusions: Concurrent monitoring of activity with accelerometers and GPS units allowed us to investigate relationships between objectively measured built environment around GPS points and minute-by-minute PA. Negative relationships between street density and LUM and PA contrast evidence from most built environment studies in adults. However, direct comparisons should be made with caution since most previous studies have focused on spatially fixed buffers around home locations, rather than the precise locations where PA occurs.

June 10 | 2019

Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health.

Klompmaker JO, Hoek G, Bloemsma LD, Wijga AH, van den Brink C, Brunekreef B, Lebret E, Gehring U, Janssen NAH.

Environ Int. 2019 May 31;129:525-537. DOI: 10.1016/j.envint.2019.05.040 [Epub ahead of print]

Abstract

BACKGROUND:

Evidence is emerging that poor mental health is associated with the environmental exposures of surrounding green, air pollution and traffic noise. Most studies have evaluated only associations of single exposures with poor mental health.

OBJECTIVES:

To evaluate associations of combined exposure to surrounding green, air pollution and traffic noise with poor mental health.

METHODS:

In this cross-sectional study, we linked data from a Dutch national health survey among 387,195 adults including questions about psychological distress, based on the Kessler 10 scale, to an external database on registered prescriptions of anxiolytics, hypnotics & sedatives and antidepressants. We added data on residential surrounding green in a 300 m and a 1000 m buffer based on the Normalized Difference Vegetation Index (NDVI) and a land-use database (TOP10NL), modeled annual average air pollutant concentrations (including particulate matter (PM10, PM2.5), and nitrogen dioxide (NO2)) and modeled road- and rail-traffic noise (Lden and Lnight) to the survey. We used logistic regression to analyze associations of surrounding green, air pollution and traffic noise exposure with poor mental health.

RESULTS:

In single exposure models, surrounding green was inversely associated with poor mental health. Air pollution was positively associated with poor mental health. Road-traffic noise was only positively associated with prescription of anxiolytics, while rail-traffic noise was only positively associated with psychological distress. For prescription of anxiolytics, we found an odds ratio [OR] of 0.88 (95% CI: 0.85, 0.92) per interquartile range [IQR] increase in NDVI within 300 m, an OR of 1.14 (95% CI: 1.10, 1.19) per IQR increase in NO2 and an OR of 1.07 (95% CI: 1.03, 1.11) per IQR increase in road-traffic noise. In multi exposure analyses, associations with surrounding green and air pollution generally remained but attenuated. Joint odds ratios [JOR], based on the Cumulative Risk Index (CRI) method, of combined exposure to air pollution, traffic noise and decreased surrounding green were higher than the ORs of single exposure models. Associations of environmental exposures with poor mental health differed somewhat by age.

CONCLUSIONS:

Studies including only one of these three correlated exposures may overestimate the influence of poor mental health attributed to the studied exposure, while underestimating the influence of combined environmental exposures.

May 27 | 2019

Association between exposure to the natural environment, rurality, and attention-deficit hyperactivity disorder in children in New Zealand: a linkage study.

Geoffrey H Donovan, PhD, Yvonne L Michael, ScD, Demetrios Gatziolis, PhD, Andrea ‘t Mannetje, PhD, Prof Jeroen Douwes, PhD

The Lancet Planetary Health Volume 3, Issue 5, May 2019, Pages e226-e234 DOI:https://doi.org/10.1016/S2542-5196(19)30070-1

Summary

Background

Several small experimental studies and cross-sectional observational studies have shown that exposure to the natural environment might protect against attention-deficit hyperactivity disorder (ADHD) or moderate the symptoms of ADHD in children. We aimed to assess whether exposure to the natural environment protects against ADHD and whether this hypothesised protective effect varies across a child’s life course.

Methods

We did a longitudinal study with data collected from all children born in New Zealand in 1998, excluding those without an address history, those who were not singleton births, and those who died or emigrated before 18 years of age. We used Statistics New Zealand’s Integrated Data Infrastructure to identify children with ADHD and to define covariates. ADHD was defined according to hospital diagnosis or pharmacy records (two or more prescriptions for ADHD drugs). Exposure to green space for each year of a child’s life (from gestation to 18 years of age) was estimated at the meshblock level (the smallest geographical unit for which the New Zealand Census reports data) using normalised difference vegetation index (NDVI), and land-use data from Landcare Research New Zealand. We used logit models to assess the associations between ADHD prevalence and minimum, maximum, and mean lifetime NDVI, as well as rural living, controlling for sex, ethnicity, mother’s educational level, mother’s smoking status, mother’s age at parturition, birth order, antibiotic use, and low birthweight.

Findings

Of the 57 450 children born in New Zealand in 1998, 49 923 were eligible and had available data, and were included in the analysis. Children who had always lived in a rural area after 2 years of age were less likely to develop ADHD (odds ratio [OR] 0·670 [95% CI 0·461–0·974), as were those with increased minimum NDVI exposure after age 2 years (standardised OR for exposure vs first quartile: second quartile 0·841 [0·707–0·999]; third quartile 0·809 [0·680–0·963]; fourth quartile 0·664 [0·548–0·805]). In early life (prenatal to age 2 years), neither rural living nor NDVI were protective against ADHD. Neither mean nor maximum greenness was significantly protective against ADHD.

Interpretation

Rurality and increased minimum greenness were strongly and independently associated with a reduced risk of ADHD. Increasing a child’s minimum lifetime greenness exposure, as opposed to maximum or mean exposure, might provide the greatest increment of protection against the disorder.

May 21 | 2019

Complex relationships between greenness, air pollution, and mortality in a population-based Canadian cohort.

Crouse DL, Pinault L, Balram A, Brauer M, Burnett RT, Martin RV, van Donkelaar A, Villeneuve PJ, Weichenthal S.

Environ Int. 2019 Jul;128:292-300. Epub 2019 May 7. DOI:10.1016/j.envint.2019.04.047

Abstract

BACKGROUND:

Epidemiological studies have consistently demonstrated that exposure to fine particulate matter (PM2.5) is associated with increased risks of mortality. To a lesser extent, a series of studies suggest that living in greener areas is associated with reduced risks of mortality. Only a handful of studies have examined the interplay between PM2.5, greenness, and mortality.

METHODS:

We investigated the role of residential greenness in modifying associations between long-term exposures to PM2.5 and non-accidental and cardiovascular mortality in a national cohort of non-immigrant Canadian adults (i.e., the 2001 Canadian Census Health and Environment Cohort). Specifically, we examined associations between satellite-derived estimates of PM2.5 exposure and mortality across quintiles of greenness measured within 500 m of individual’s place of residence during 11 years of follow-up. We adjusted our survival models for many personal and contextual measures of socioeconomic position, and residential mobility data allowed us to characterize annual changes in exposures.

RESULTS:

Our cohort included approximately 2.4 million individuals at baseline, 194,270 of whom died from non-accidental causes during follow-up. Adjustment for greenness attenuated the association between PM2.5 and mortality (e.g., hazard ratios (HRs) and 95% confidence intervals (CIs) per interquartile range increase in PM2.5 in models for non-accidental mortality decreased from 1.065 (95% CI: 1.056-1.075) to 1.041 (95% CI: 1.031-1.050)). The strength of observed associations between PM2.5 and mortality decreased as greenness increased. This pattern persisted in models restricted to urban residents, in models that considered the combined oxidant capacity of ozone and nitrogen dioxide, and within neighbourhoods characterised by high or low deprivation. We found no increased risk of mortality associated with PM2.5among those living in the greenest areas. For example, the HR for cardiovascular mortality among individuals in the least green areas was 1.17 (95% CI: 1.12-1.23) compared to 1.01 (95% CI: 0.97-1.06) among those in the greenest areas.

CONCLUSIONS:

Studies that do not account for greenness may overstate the air pollution impacts on mortality. Residents in deprived neighbourhoods with high greenness benefitted by having more attenuated associations between PM2.5 and mortality than those living in deprived areas with less greenness. The findings from this study extend our understanding of how living in greener areas may lead to improved health outcomes.