November 12 | 2018

A Web-Based Survey of Residents’ Views on Advocating with Patients for a Healthy Built Environment in Canada. 

Matthew Cruickshank and Marcus Law

International Journal of Family Medicine Volume 2014, Article ID 458184, 7 pages

http://dx.doi.org/10.1155/2014/458184

 

Abstract

Purpose. To determine family medicine residents’ perceived knowledge and attitudes towards the built environment and their responsibility for health advocacy and to identify their perceived educational needs and barriers to patient education and advocacy.

Methods. A web-based survey was conducted in Canada with University of Toronto family medicine residents. Data were analyzed descriptively.

Results. 93% agreed or strongly agreed that built environment significantly impacts health. 64% thought educating patients on built environment is effective disease prevention; 52% considered this a role of family physicians. 78% reported that advocacy for built environment is effective disease prevention; 56% perceived this to be the family physician’s role. 59% reported being knowledgeable to discuss how a patient’s environment may affect his/her health; 35% reported being knowledgeable to participate in community discussions on built environment. 78% thought education would help with integration into practice. Inadequate time (92%), knowledge (73%), and remuneration (54%) were barriers.

Conclusions. While residents perceived value in education and advocacy as disease prevention strategies and acknowledged the importance of a healthy built environment, they did not consider advocacy towards this the family physician’s role. Barrier reduction and medical education may contribute to improved advocacy, ultimately improving physical activity levels and patient health outcomes.

STUDENT TRAVEL AWARD RECIPIENTS

Congratulations to our latest travel award recipients:

 

 

 

 

 

 

 

November 5 | 2018

Mapping Air Pollution with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression.

Messier KP, Chambliss SE, Gani S, Alvarez R, Brauer M, Choi JJ, Hamburg SP, Kerckhoffs J, LaFranchi B, Lunden MM, Marshall JD, Portier CJ, Roy A, Szpiro AA, Vermeulen RCH, Apte JS.

Environ Sci Technol. 2018 Oct 24. doi: DOI:10.1021/acs.est.8b03395 [Epub ahead of print]

 

Abstract 

Air pollution measurements collected through systematic mobile monitoring campaigns can provide outdoor concentration data at high spatial resolution. We explore approaches to minimize data requirements for mapping a city’s air quality using mobile monitors with “data-only” versus predictive modeling approaches. We equipped two Google Street View cars with 1-Hz instruments to collect nitric oxide (NO) and black carbon (BC) measurements in Oakland, CA. We explore two strategies for efficiently mapping spatial air quality patterns through Monte Carlo analyses. First, we explore a “data-only” approach where we attempt to minimize the number of repeated visits needed to reliably estimate concentrations for all roads. Second, we combine our data with a land use regression-kriging (LUR-K) model to predict at unobserved locations; here, measurements from only a subset of roads or repeat visits are considered. Although LUR-K models did not capture the full variability of on-road concentrations, models trained with minimal data consistently captured important covariates and general spatial air pollution trends, with cross-validation R2 for log-transformed NO and BC of 0.65 and 0.43. Data-only mapping performed poorly with few (1-2) repeated drives but obtained better cross-validation R2 than the LUR-K approach within 4 to 8 repeated drive days per road segment.

 

 

October 29 | 2018

A machine learning approach to estimate hourly exposure to fine particulate matter for urban, rural, and remote populations during wildfire seasons. 

Yao J, Brauer M, Raffuse SM, Henderson S.

Environ Sci Technol. 2018 Oct 24. Epub ahead of print] DOI:10.1021/acs.est.8b01921

Abstract 

Exposure to wildfire smoke averaged over 24-hour periods has been associated with a wide range of acute cardiopulmonary events, but little is known about the effects of sub-daily exposures immediately preceding these events. One challenge for studying sub-daily effects is the lack of spatially and temporally resolved estimates of smoke exposures. Inexpensive and globally applicable tools to reliably estimate exposure are needed. Here we describe a Random Forests machine learning approach to estimate 1-hour average population exposure to fine particulate matter during wildfire seasons from 2010 to 2015 in British Columbia, Canada, at a 5km by 5km resolution. The model uses remotely sensed fire activity, meteorology assimilated from multiple data sources, and geographic/ecological information. Compared with observations, model predictions had a correlation of 0.93, root mean squared error of 3.2 µg/m3, mean fractional bias of 15.1%, and mean fractional error of 44.7%. Spatial cross-validation indicated an overall correlation of 0.60, with an interquartile range from 0.48 to 0.70 across monitors. This model can be adapted for global use, even in locations without air quality monitoring. It is useful for epidemiologic studies on sub-daily exposure to wildfire smoke, and for informing public health actions if operationalized in near-real-time.

October 22 | 2018

Socioeconomic status and environmental noise exposure in Montreal, Canada.

Dale LM, Goudreau S, Perron S, Ragettli MS, Hatzopoulou M, Smargiassi A.

BMC Public Health. 2015 Feb 28;15:205. doi: 10.1186/s12889-015-1571-2

 

Abstract 

BACKGROUND:

This study’s objective was to determine whether socioeconomically deprived populations are exposed to greater levels of environmental noise.

METHODS:

Indicators of socioeconomic status were correlated with LAeq24h noise levels estimated with a land-use regression model at a small geographic scale.

RESULTS:

We found that noise exposure was associated with all socioeconomic indicators, with the strongest correlations found for median household income, proportion of people who spend over 30% of their income on housing, proportion of people below the low income boundary and with a social deprivation index combining several socio-economic variables.

CONCLUSION:

Our results were inconsistent with a number of studies performed elsewhere, indicating that locally conducted studies are imperative to assessing whether this double burden of noise exposure and low socioeconomic status exists in other contexts. The primary implication of our study is that noise exposure represents an environmental injustice in Montreal, which is an issue that merits both investigation and concern.

 

 

October 15 | 2018

Association between residential self-selection and non-residential built environment exposures.

Howell NA, Farber S, Widener MJ, Allen J, Booth GL.

Health Place. 2018 Oct 1;54:149-154 DOI: 10.1016/j.healthplace.2018.08.009

Abstract

Studies employing ‘activity space’ measures of the built environment do not always account for how individuals self-select into different residential and non-residential environments when testing associations with physical activity. To date, no study has examined whether preferences for walkable residential neighborhoods predict exposure to other walkable neighborhoods in non-residential activity spaces. Using a sample of 9783 university students from Toronto, Canada, we assessed how self-reported preferences for a walkable neighborhood predicted their exposure to other walkable, non-residential environments, and further whether these preferences confounded observed walkability-physical activity associations. We found that residential walkability preferences and non-residential walkability were significant associated (β = 0.42, 95% CI: (0.37, 0.47)), and further that these preferences confounded associations between non-residential walkability exposure and time spent walking (reduction in association = 10.5%). These results suggest that self-selection factors affect studies of non-residential built environment exposures.

October 9 | 2018

Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. 

Lorien Nesbitt, Michael J. Meitner, Cynthia Girling, Stephen R.J. Sheppard, Yuhao Lua.

Landscape and Urban Planning Volume 181, January 2019, Pages 51-79

https://doi.org/10.1016/j.landurbplan.2018.08.007

Abstract 

This research examines the distributional equity of urban vegetation in 10 US urbanized areas using very high resolution land cover data and census data. Urban vegetation is characterized three ways in the analysis (mixed vegetation, woody vegetation, and public parks), to reflect the variable ecosystem services provided by different types of urban vegetation. Data are analyzed at the block group and census tract levels using Spearman’s correlations and spatial autoregressive models. There is a strong positive correlation between urban vegetation and higher education and income across most cities. Negative correlations between racialized minority status and urban vegetation are observed but are weaker and less common in multivariate analyses that include additional variables such as education, income, and population density. Park area is more equitably distributed than mixed and woody vegetation, although inequities exist across all cities and vegetation types. The study finds that education and income are most strongly associated with urban vegetation distribution but that various other factors contribute to patterns of urban vegetation distribution, with specific patterns of inequity varying by local context. These results highlight the importance of different urban vegetation measures and suggest potential solutions to the problem of urban green inequity. Cities can use our results to inform decision making focused on improving environmental justice in urban settings.

October 1 | 2018

Capturing the spatial variability of noise levels based on a short-term monitoring campaign and comparing noise surfaces against personal exposures collected through a panel study.

Fallah-Shorshani M, Minet L, Liu R, Plante C, Goudreau S, Oiamo T, Smargiassi A, Weichenthal S, Hatzopoulou M.

Environ Res. 2018 Aug 17;167:662-672. DOI: 10.1016/j.envres.2018.08.021 

 

Abstract

Environmental noise can cause important cardiovascular effects, stress and sleep disturbance. The development of appropriate methods to estimate noise exposure within a single urban area remains a challenging task, due to the presence of various transportation noise sources (road, rail, and aircraft). In this study, we developed a land-use regression (LUR) approach using a Generalized Additive Model (GAM) for LAeq (equivalent noise level) to capture the spatial variability of noise levels in Toronto, Canada. Four different model formulations were proposed based on continuous 20-min noise measurements at 92 sites and a leave one out cross-validation (LOOCV). Models where coefficients for variables considered as noise sources were forced to be positive, led to the development of more realistic exposure surfaces. Three different measures were used to assess the models; adjusted R2 (0.44-0.64), deviance (51-72%) and Akaike information criterion (AIC) (469.2-434.6). When comparing exposures derived from the four approaches to personal exposures from a panel study, we observed that all approaches performed very similarly, with values for the Fractional mean bias (FB), normalized mean square error (NMSE), and normalized absolute difference (NAD) very close to 0. Finally, we compared the noise surfaces with data collected from a previous campaign consisting of 1-week measurements at 200 fixed sites in Toronto and observed that the strongest correlations occurred between our predictions and measured noise levels along major roads and highway collectors. Our validation against long-term measurements and panel data demonstrates that manual modifications brought to the models were able to reduce bias in model predictions and achieve a wider range of exposures, comparable with measurement data.

September 24 | 2018

The Oakville Oil Refinery Closure and Its Influence on Local Hospitalizations: A Natural Experiment on Sulfur Dioxide. 

Burr WS, Dales R, Liu L, Stieb D, Smith-Doiron M, Jovic B, Kauri LM, Shin HH.

Int J Environ Res Public Health. 2018 Sep 17;15(9). pii: E2029. DOI:10.3390/ijerph15092029

Abstract

Background: An oil refinery in Oakville, Canada, closed over 2004⁻2005, providing an opportunity for a natural experiment to examine the effects on oil refinery-related air pollution and residents’ health. Methods: Environmental and health data were collected for the 16 years around the refinery closure. Toronto (2.5 million persons) and the Greater Toronto Area (GTA, 6.3 million persons) were used as control and reference populations, respectively, for Oakville (160,000 persons). We compared sulfur dioxide and age- and season-standardized hospitalizations, considering potential factors such as changes in demographics, socio-economics, drug prescriptions, and environmental variables. Results: The closure of the refinery eliminated 6000 tons/year of SO₂ emissions, with an observed reduction of 20% in wind direction-adjusted ambient concentrations in Oakville. After accounting for trends, a decrease in cold-season peak-centered respiratory hospitalizations was observed for Oakville (reduction of 2.2 cases/1000 persons per year, p = 0.0006 ) but not in Toronto (p = 0.856) and the GTA (p = 0.334). The reduction of respiratory hospitalizations in Oakville post closure appeared to have no observed link to known confounders or effect modifiers. Conclusion: The refinery closure allowed an assessment of the change in community health. This natural experiment provides evidence that a reduction in emissions was associated with improvements in population health. This study design addresses the impact of a removed source of air pollution.

Lessons Learned: Moving Walkability to Policy and Practice | October 16 | 2018

9am – 10am pacific | 12 noon – 1pm eastern

REGISTER NOW

Utilitarian walkability by 1km buffered postal code – Prepared by Urban Design 4 Health Ltd and Toronto Public Health
The Walkable City: Neighbourhood Design and Preferences, Travel Choices and Health, April 2012 Toronto Public Health


Hear about Dr. Frank’s recent collaborative work in Metro Vancouver, linking detailed data on neighbourhood walkability, regional transit and park access with Type 2 Diabetes, cardiovascular disease, hypertension, stress, and sense of community relationships across a range of age and income cohorts, followed by a broader discussion of  walkability research and future directions.

 

Lawrence Frank is Professor in Sustainable Transportation and Public Health at UBC and specializes in the interaction between land use, travel behavior, air quality; and health.  He coined the term “walkability” in the early – mid 90’s; his work led to WalkScore and has been cited over 26,000 times making him one of the 2 most cited planning academics globally. Thompson and Reuters has listed him in the top 1% globally since 2014 as a highly cited researcher.  Dr. Frank has published over 150 peer reviewed articles and reports and co-authored two of the leading books – Heath and Community Design and Urban Sprawl and Public Health which helped to map out the field emerging at the nexus of planning and health.