January 15 | 2018

The Canadian Urban Environmental Health Research Consortium – a protocol for building a national environmental exposure data platform for integrated analyses of urban form and health

Jeffrey R. Brook, Eleanor M. Setton, Evan Seed, Mahdi Shooshtari, Dany Doiron and CANUE – The Canadian Urban Environmental Health Research Consortium

BMC Public Health BMC series https://doi.org/10.1186/s12889-017-5001-5 Published: 8 January 2018

Abstract

Background

Multiple external environmental exposures related to residential location and urban form including, air pollutants, noise, greenness, and walkability have been linked to health impacts or benefits. The Canadian Urban Environmental Health Research Consortium (CANUE) was established to facilitate the linkage of extensive geospatial exposure data to existing Canadian cohorts and administrative health data holdings. We hypothesize that this linkage will enable investigators to test a variety of their own hypotheses related to the interdependent associations of built environment features with diverse health outcomes encompassed by the cohorts and administrative data.

January 8 | 2018

Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study

Rudy Sinharay, MBBS, Jicheng Gong, PhD, Benjamin Barratt, PhD, Pamela Ohman-Strickland, PhD, Sabine Ernst, MD, Prof Frank Kelly, PhD, Prof Junfeng (Jim) Zhang, PhD, Prof Peter Collins, MD, Prof Paul Cullinan, MD, Prof Kian Fan Chung, DSc

Co-first authors contributed equally

The Lancet.  DOI: http://dx.doi.org/10.1016/S0140-6736(17)32643-0 Published: 05 December 2017

Summary

Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults.

January 1 | 2018

Evaluation of daily time spent in transportation and traffic-influenced microenvironments by urban Canadians

Carlyn J. Matz ,David M. Stieb, Marika Egyed, Orly Brion, Markey Johnson

Air Quality, Atmosphere & Health pp 1–12|  First Online: 30 November 2017 https://doi.org/10.1007/s11869-017-0532-6

Abstract

Exposure to traffic and traffic-related air pollution is associated with a wide array of health effects. Time spent in a vehicle, in active transportation, along roadsides, and in close proximity to traffic can substantially contribute to daily exposure to air pollutants. For this study, we evaluated daily time spent in transportation and traffic-influenced microenvironments by urban Canadians using the Canadian Human Activity Pattern Survey (CHAPS) 2 results. Approximately 4–7% of daily time was spent in on- or near-road locations, mainly associated with being in a vehicle and smaller contributions from active transportation. Indoor microenvironments can be impacted by traffic emissions, especially when located near major roadways. Over 60% of the target population reported living within one block of a roadway with moderate to heavy traffic, which was variable with income level and city, and confirmed based on elevated NO2 exposure estimated using land use regression. Furthermore, over 55% of the target population ≤ 18 years reported attending a school or daycare in close proximity to moderate to heavy traffic, and little variation was observed based on income or city. The results underline the importance of traffic emissions as a major source of exposure in Canadian urban centers, given the time spent in traffic-influenced microenvironments.

December 18 | 2017

The Lancet Commissions

The Lancet Commission on pollution and health

The Lancet Commission on pollution and health Philip J Landrigan, Richard Fuller, Nereus J R Acosta, Olusoji Adeyi, Robert Arnold, Niladri (Nil) Basu, Abdoulaye Bibi Baldé, Roberto Bertollini, Stephan Bose-O’Reilly, Jo Ivey Boufford, Patrick N Breysse, Thomas Chiles, Chulabhorn Mahidol, Awa M Coll-Seck, Maureen L Cropper, Julius Fobil, Valentin Fuster, Michael Greenstone, Andy Haines, David Hanrahan, David Hunter, Mukesh Khare, Alan Krupnick, Bruce Lanphear, Bindu Lohani, Keith Martin, Karen V Mathiasen, Maureen A McTeer, Christopher J L Murray, Johanita D Ndahimananjara, Frederica Perera, Janez Potočnik, Alexander S Preker, Jairam Ramesh, Johan Rockström, Carlos Salinas, Leona D Samson, Karti Sandilya, Peter D Sly, Kirk R Smith, Achim Steiner, Richard B Stewart, William A Suk, Onno C P van Schayck, Gautam N Yadama, Kandeh Yumkella, Ma Zhong

Published: 19 October 2017  DOI: http://dx.doi.org/10.1016/S0140-6736(17)32345-0

Pollution is the largest environmental cause of disease and premature death in the world today. Diseases caused by pollution were responsible for an estimated 9 million premature deaths in 2015—16% of all deaths worldwide—three times more deaths than from AIDS, tuberculosis, and malaria combined and 15 times more than from all wars and other forms of violence. In the most severely affected countries, pollution-related disease is responsible for more than one death in four.

December 11 | 2017

The Chief Public Health Officer’s Report on the State of Public Health in Canada 2017 – Designing Healthy Living

The Chief Public Health Officer’s Report on the State of Public Health in Canada 2017 – Designing Healthy Living

A message from Canada’s Chief Public Health Officer

Without being aware of it, our neighbourhoods and how they are built influence how healthy we are.

I chose designing healthy living as the topic for my first report as Canada’s Chief Public Health Officer because of the tremendous potential that changing our built environment has for helping Canadians live healthier lives.

Chronic diseases like diabetes, cancer and cardiovascular disease are the leading causes of death in Canada. It is alarming that in 2011, almost 2.7 million or 1 in 10 Canadians 20 years and older were living with diabetes. Rising rates of type II diabetes can be considered a red flag for poor health as they are associated with higher rates of other diseases and conditions and linked to an unhealthy diet, low physical activity and higher rates of overweight and obesity. Rates of type II diabetes and other chronic diseases in Canada could be reduced by seamlessly integrating healthy living into our daily lives which can be achieved, in part, by designing and redesigning our communities.

Improving public health and preventing disease through changes to our environment is a well-founded concept. For example, infectious disease rates in the last century were reduced not just through scientific innovation and vaccination, but also through infrastructure planning by improving sanitation and addressing overcrowding in residential neighbourhoods.

This report answers many questions but also raises several others. We need better information if we are to measure the health impacts of community design to incorporate evidence-based strategies into community planning. This report will raise awareness among Canadians about the unique aspects of their communities that they could take advantage of to improve their health. It will also encourage more dialogue across the many disciplines involved in community planning and health promotion so that neighbourhood design considers and promotes physical activity, healthy diets and mental wellness.

Dr. Theresa Tam
Chief Public Health Officer of Canada

https://www.canada.ca/en/public-health/services/publications/chief-public-health-officer-reports-state-public-health-canada/2017-designing-healthy-living.html

December 4 | 2017

Heat and pregnancy-related emergencies: Risk of placental abruption during hot weather.

He S1Kosatsky T2Smargiassi A3Bilodeau-Bertrand M4Auger N5.

Environ Int. 2017 Nov 13. pii: S0160-4120(17)31686-0  DOI:10.1016/j.envint.2017.11.004

Abstract

INTRODUCTION:

Outdoor heat increases the risk of preterm birth and stillbirth, but the association with placental abruption has not been studied. Placental abruption is a medical emergency associated with major morbidity and mortality in pregnancy. We determined the relationship between ambient temperature and risk of placental abruption in warm seasons.

MATERIAL AND METHODS:

We performed a case-crossover analysis of 17,172 women whose pregnancies were complicated by placental abruption in Quebec, Canada from May to October 1989-2012. The main exposure measure was the maximum temperature reached during the week before abruption. We computed odds ratios (OR) and 95% confidence intervals (CI) for the association of temperature with placental abruption, adjusted for humidity and public holidays. We assessed whether associations were stronger preterm or at term, or varied with maternal age, parity, comorbidity and socioeconomic status.

RESULTS:

Compared with 15°C, a maximum weekly temperature of 30°C was associated with 1.07 times the odds of abruption (95% CI 0.99-1.16). When the timing of abruption was examined, the associations were significantly stronger at term (OR 1.12, 95% CI 1.02-1.24) than preterm (OR 0.96, 95% CI 0.83-1.10). Relationships were more prominent at term for women who were younger than 35years old, nulliparous or socioeconomically disadvantaged, but did not vary with comorbidity. Associations were stronger within 1 and 5days of abruption. Temperature was not associated with preterm abruption regardless of maternal characteristics.

CONCLUSIONS:

Elevated temperatures in warm seasons may increase the risk of abruption in women whose pregnancies are near or at term. Pregnant women may be more sensitive to heat and should consider preventive measures such as air conditioning and hydration during hot weather.

Paper of the Week | November 27 | 2017

Noise exposure while commuting in Toronto – a study of personal and public transportation in Toronto

Christopher M.K.L. Yao, Andrew K. Ma, Sharon L. Cushing and Vincent Y.W. Lin.

Journal of Otolaryngology – Head & Neck Surgery201746:62 https://doi.org/10.1186/s40463-017-0239-6 23 November 2017

Abstract

Background

With an increasing proportion of the population living in cities, mass transportation has been rapidly expanding to facilitate the demand, yet there is a concern that mass transit has the potential to result in excessive exposure to noise, and subsequently noise-induced hearing loss.

Methods

Noise dosimetry was used to measure time-integrated noise levels in a representative sample of the Toronto Mass Transit system (subway, streetcar, and buses) both aboard moving transit vehicles and on boarding platforms from April – August 2016. 210 measurements were conducted with multiple measurements approximating 2 min on platforms, 4 min within a vehicle in motion, and 10 min while in a car, on a bike or on foot. Descriptive statistics for each type of transportation, and measurement location (platform vs. vehicle) was computed, with measurement locations compared using 1-way analysis of variance.

Results

On average, there are 1.69 million riders per day, who are serviced by 69 subway stations, and 154 streetcar or subway routes. Average noise level was greater in the subway and bus than in the streetcar (79.8 +/− 4.0 dBA, 78.1 +/− 4.9 dBA, vs 71.5 +/−1.8 dBA, p < 0.0001). Furthermore, average noise measured on subway platforms were higher than within vehicles (80.9 +/− 3.9 dBA vs 76.8 +/− 2.6 dBA, p < 0.0001). Peak noise exposures on subway, bus and streetcar routes had an average of 109.8 +/− 4.9 dBA and range of 90.4–123.4 dBA, 112.3 +/− 6.0 dBA and 89.4–128.1 dBA, and 108.6 +/− 8.1 dBA and 103.5–125.2 dBA respectively. Peak noise exposures exceeded 115 dBA on 19.9%, 85.0%, and 20.0% of measurements in the subway, bus and streetcar respectively.

Conclusions

Although the mean average noise levels on the Toronto transit system are within the recommended level of safe noise exposure, cumulative intermittent bursts of impulse noise (peak noise exposures) particularly on bus routes have the potential to place individuals at risk for noise induced hearing

November 20 | 2017

Estimating the health benefits of planned public transit investments in Montreal.

Tétreault LF1, Eluru N2, Hatzopoulou M3, Morency P4, Plante C5, Morency C6, Reynaud F7, Shekarrizfard M3, Shamsunnahar Y2, Faghih Imani A7, Drouin L4, Pelletier A5, Goudreau S5, Tessier F5, Gauvin L8, Smargiassi A9.

Environ Res. 2017 Oct 23;160:412-419. https://doi.org/10.1016/j.envres.2017.10.025

BACKGROUND:

Since public transit infrastructure affects road traffic volumes and influences transportation mode choice, which in turn impacts health, it is important to estimate the alteration of the health burden linked with transit policies.

OBJECTIVE:

We quantified the variation in health benefits and burden between a business as usual (BAU) and a public transit (PT) scenarios in 2031 (with 8 and 19 new subway and train stations) for the greater Montreal region.

METHOD:

Using mode choice and traffic assignment models, we predicted the transportation mode choice and traffic assignment on the road network. Subsequently, we estimated the distance travelled in each municipality by mode, the minutes spent in active transportation, as well as traffic emissions. Thereafter we estimated the health burden attributed to air pollution and road traumas and the gains associated with active transportation for both the BAU and PT scenarios.

RESULTS:

We predicted a slight decrease of overall trips and kilometers travelled by car as well as an increase of active transportation for the PT in 2031 vs the BAU. Our analysis shows that new infrastructure will reduce the overall burden of transportation by 2.5 DALYs per 100,000 persons. This decrease is caused by the reduction of road traumas occurring in the inner suburbs and central Montreal region as well as gains in active transportation in the inner suburbs.

CONCLUSION:

Based on the results of our study, transportation planned public transit projects for Montreal are unlikely to reduce drastically the burden of disease attributable to road vehicles and infrastructures in the Montreal region. The impact of the planned transportation infrastructures seems to be very low and localized mainly in the areas where new public transit stations are planned.

 

November 13 | 2017

The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health

Watts et al

The Lancet, DOI: http://dx.doi.org/10.1016/S0140-6736(17)32464-9

Summary

The Lancet Countdown tracks progress on health and climate change and provides an independent assessment of the health effects of climate change, the implementation of the Paris Agreement,1 and the health implications of these actions. It follows on from the work of the 2015 Lancet Commission on Health and Climate Change,2 which concluded that anthropogenic climate change threatens to undermine the past 50 years of gains in public health, and conversely, that a comprehensive response to climate change could be “the greatest global health opportunity of the 21st century”.

November 6 | 2017

The impact of urbanization and climate change on urban temperatures: a systematic review

Sarah Chapman, James E. M. Watson, Alvaro Salazar, Marcus Thatcher, Clive A. McAlpine

Landscape Ecology  October 2017, Volume 32, Issue 10, pp 1921–1935

https://link.springer.com/article/10.1007/s10980-017-0561-4

 

Abstract

Context

Cities have elevated temperatures compared to rural areas, a phenomenon known as the “urban heat island”. Higher temperatures increase the risk of heat-related mortality, which will be exacerbated by climate change.

Objectives

To examine the impact of climate change and urban growth on future urban temperatures and the potential for increased heat stress on urban residents.

Methods

We conducted a systematic review of scientific articles from Jan 2000 to May 2016.

Results

The majority (n = 49, = 86%) of studies examined climate change and the urban heat island in isolation, with few (8) considering their combined effect. Urban growth was found to have a large impact on local temperatures, in some cases by up to 5 °C in North-east USA. In some locations climate change increased the heat island, such as Chicago and Beijing, and in others decreased it, such as Paris and Brussels. When the relative impact of both factors was considered, the temperature increase associated with the urban heat island was always higher. Few studies (9) considered heat stress and its consequences for urban populations. Important contributors to urban temperatures, such as variation in urban density and anthropogenic heat release, were often excluded from studies.

Conclusions

We identify a need for an increased research focus on (1) urban growth impact on the urban heat island in climate change studies; (2) heat stress; and, (3) variation in urban density and its impacts on anthropogenic heat. Focussing on only one factor, climate change or urban growth, risks underestimating future urban temperatures and hampering adaptation.